Identification of the ‘Active’ Fraction and Metabolic Pathways in Trace Organic Contaminants Removal Using Stable Isotope Probing



Standard price: £28.00

Available as an ebook

Please purchase via www.iwaponline.comOpens in new window

Also part of Water Intelligence Online Digital Reference Library

Standard ePrice: £28.00


Access ebook

Author(s): Kartik Chandran

Publication Date: 15/09/2016

Pages: 74

eISBN: 9781780408286

Download book flyer Print page

The widespread presence of trace organic contaminants (TOrC), such as the endocrine disrupting compound bisphenol-A (BPA), has been cause for growing concern due to persistence in the environment and potential ecological impacts. Despite progress made in understanding the removal of TOrC in biological wastewater treatment processes, there is still a lack of consensus regarding the identity of microorganisms active in biodegradation and the exact removal mechanisms involved. This research aimed to develop a clear understanding of the microbial ‘active’ fraction in activated sludge which is responsible for the assimilation of a selected TOrC, BPA. Through the use of DNA stable isotope probing (DNA-SIP), BPA assimilating organisms were identified.  This active fraction of BPA assimilation included bacteria related to Sphingobium spp., Sphingomonas spp., Pussilimonas spp., and Variovorax spp.. Results from this work also confirm that prior or time-course exposure to BPA as well as bioreactor process conditions influence microbial community structure and function. Added understanding of TOrC removal mechanisms could be derived through continued investigation into microbial functions associated with BPA removal.

Project Number: U2R12

Kartik Chandran

The latest from @IWApublishing

RT : Are you interested in contributing to the Special Issue on ? 2 days 15 hours ago
"Propagation dynamics and causes of hydrological in response to drought at seasonal timesc… 4 days 15 hours ago
RT : 🚨Not long left to submit your paper for peer review and possible publication in this Special Issue ⬇ Relevant topi… 4 days 15 hours ago